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Abstract 
 

 This technical memorandum provides an overview of the state of the art of control 
system design for swarming UAVs.  An overview of trends and future needs for military 
applications of UAVs is presented first.  Linear controller design for aircrafts is then reviewed 
in the context of UAV systems.  Comparative analysis of flight, collision avoidance and 
mission control approaches for swarming UAVs is provided.  Then, advanced nonlinear UAV 
control designs including several feedback linearization techniques, Neural Network 
implementation, Fuzzy Logic application incorporated with Linear and Nonlinear Model 
Predictive Control for swarming UAVs are analysed.  Finally, the importance of Hardware in 
the Loop Simulation is discussed. Simulation and experimental validation results will be 
presented in subsequent reports. 

Résumé  
 
 

Ce document technique donne une vue d’ensemble de l’état actuel des connaissances 
en matière de conception des systèmes de commande d’engins télépilotés volant en groupe. 
Une vue d’ensemble des tendances et des besoins futurs pour les applications militaires des 
engins télépilotés est d’abord présentée. Une analyse comparative des vols, des évitements 
d’abordage et des approches relatives au contrôle des missions des engins télépilotés volant en 
groupe est fournie. Puis, des modèles de contrôle non linéaire évolués pour les engins 
télépilotés, y compris plusieurs techniques de linéarisation de la rétroaction, la mise en oeuvre 
de réseaux neuronaux et un application de la logique floue intégrée au contrôle prédictif des 
modèles linéaires et non linéaires des engins télépilotés volant en groupe sont analysés. Enfin, 
l’importance du matériel dans la simulation en boucle est abordée. Les résultats des 
simulations et de la validation des expériences seront présentés dans des rapports subséquents. 
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Executive summary 
 
 The purpose of this technical memorandum is to provide input to the multi-UAV 
cooperative control research community on the topic of navigation sensing and control 
approaches and related communication bandwidth reduction requirements for high-
performance flight and mission characteristics for swarming UAVs.  Each UAV has local 
control requirements and the swarming UAVs have supplementary sensing, control and 
communications requirements imposed due to membership of the UAV swarm. These issues 
have to be addressed concurrently and for this purpose further research and development work 
is needed.  This report serves as the basis of the research to be performed in our TIF project, 
“Enabling Aerial Autonomous Intelligent System Cooperation Through A Time-Constrained 
Decentralized Model Predictive Control”. 
 
 This report focuses on control approaches for flight control and collision avoidance of 
swarming UAVs and provides the following:   

• A literature review regarding:  
       (a) UAV flight and mission control; 

              (b) Navigation sensing, control and communication requirements for swarming 
UAVs; 

• A comparative analysis of dynamic, kinematic, geometric, neural networks and fuzzy 
approaches for flight control and collision avoidance for swarming UAVs. 

• A synthesis of the basic control approaches in analytical and block diagram forms 
 
          An essential step for the research of swarming UAVs was an investigation of the state-
of-the-art of development of individual UAV flight and mission control approaches and 
swarming UAV’s sensing-control and communication approaches as documented in the 
published literature.  The analysis consists of comparison of dynamic, kinematic, geometric, 
neural networks, and fuzzy logic approaches for flight control and collision avoidance of 
swarming UAVs. 
 
 The results of the analysis are presented in the framework of analytical models and 
block diagrams. The report provides conclusions and recommendations concerning the 
performance of the proposed approaches in terms of suitability for flight and mission control 
of swarming UAVs. 
 
 
 

 

Kim, B., Hubbard, P., Necsulescu, D. 2003. Swarming UAV’s Concept Development and 
Experimentation; A State of the Art Review on Flight and Mission Control. DRDC 
Ottawa TM 2003-176. Defence R&D Canada - Ottawa.
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Sommaire 
 
 Ce document technique a pour objet de renseigner le milieu de la recherche sur le 
contrôle coopératif au sujet de la détection de navigation, des approches relatives au contrôle 
et des exigences connexes en matière de réduction de la largeur de bande de communication 
pour les caractéristiques de vol et de mission haute performance des engins télépilotés volant 
en groupe. Chaque engin télépiloté a des exigences de contrôle local, et les engins télépilotés 
volant en groupe ont des exigences supplémentaires en matière de détection, de contrôle et de 
communication qui sont imposées du fait qu’ils volent en groupe. Ces questions doivent être 
traitées en même temps et, à cette fin, d’autres recherches et du travail de développement sont 
nécessaires. Ce rapport sert de base à la recherche qui doit être exécutée dans le cadre de notre 
projet FIT intitulé « Coopération de systèmes intelligents autonomes aériens grâce au contrôle 
prédictif d’un modèle décentralisé limité dans le temps ». 
 
 Ce rapport porte sur les approches de contrôle et d’évitement d’abordage d’engins 
télépilotés volant en groupe et il contient ce qui suit :  

• une revue de la documentation portant sur : 
a) le contrôle du vol et de la mission d’un engin télépiloté; 
b) les exigences en matière de détection de la navigation, de contrôle et 

de communication d’engins télépilotés volant en groupe; 
• une analyse comparative de la dynamique, de la cinématique, de la 

géométrie, des réseaux neuronaux et des approches floues liés au contrôle 
du vol et à l’évitement des abordages pour les engins télépilotés volant en 
groupe; 

• une synthèse des approches de contrôle fondamentales sous forme 
analytique et schématique. 

 
Une étape essentielle de la recherche sur les engins télépilotés volant en groupe a été 
l’examen de l’état des connaissances en matière de développement d’approches de contrôle de 
vol et de mission d’un engin télépiloté pris isolément ainsi que des approches liées à la 
communication et au contrôle de détection des engins télépilotés volant en groupe, comme 
elles figurent dans la documention publiée. L’analyse consiste à comparer la dynamique, la 
cinématique, la géométrie, les réseaux neuronaux et les approches à logique floue pour le 
contrôle du vol et l’évitement des abordages des engins télépilotés volant en groupe. 
 

Les résultats de l’analyse sont présentés dans le cadre de modèles analytiques et de 
schémas de principe. Le rapport contient des conclusions et des recommandations relatives au 
rendement des approches proposées en termes d’adéquation par rapport au contrôle du vol et 
des missions des engins télépilotés volant en groupe.  
 
 
 

 

 

Kim, B., Hubbard, P., Necsulescu, D. 2003. Swarming UAV’s Concept Development and 
Experimentation; A State of the Art Review on Flight and Mission Control. DRDC 
Ottawa  TM 2003-176  R & D pour la défense Canada - Ottawa.
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1.   Introduction 
 
 The purpose of this technical report is to provide input on the topic of sensing and 
control approaches and related communications requirements for high performance flight and 
missions for swarming UAVs. Each UAV has local control requirements and the swarming 
UAV’s have supplementary sensing-control and communications requirements. These issues 
have to be addressed concurrently and for this purpose further research and development work 
is needed. 
  
         A first step in this work is an investigation of the state-of-the-art of development of 
individual UAV flight and mission control approaches and swarming UAVs sensing-control 
and communication approaches as documented in the published literature.  The analysis 
consists of comparing dynamic, kinematic, geometric, neural networks and fuzzy approaches 
for flight control and collision avoidance of swarming UAVs. 
 
 The results of the analysis are presented in the framework of analytical models and 
block diagrams. The report provides conclusions and recommendations concerning the 
performance of the proposed approaches in terms of suitability for flight and mission control 
of swarming UAVs. 
 

1.1   Review of Unmanned Aerial Vehicle (UAV) Trends and 
Future Needs for Military Applications  
 
 The US Department of Defense roadmap for UAVs predicts a quantitative change 
from 90 units in 2001 to 290 units by 2010 paralleled by significant qualitative improvements. 
The projection of new UAV capabilities until 2025 are [1, 2]: 

• new propulsion technologies as, for example, fuel cells for silent flight, microwave or 
laser beaming for lighter UAVs etc.; 

• increased endurance, i.e. increased range for given velocity, up to months or longer; 

• higher flight altitudes; 

• higher velocities, up to hypersonic speeds; 

• higher reliability and survivability; 

• self-repairability, for example, software based reconfiguration of the remaining 
control surfaces after the damage of the primary ones, etc. 

 Development investment was of $ 3 billion in nineties, followed by $ 4 billion in the 
next decade [1]. A contract of $ 0.6 million will demonstrate operationally UAV collision 
avoidance in 2004 and another contract of $ 29 million will be operationally available in 2007 



  
 

2 DRDC Ottawa TM 2003-176 
 
  
 

for autonomous control with automatic collision avoidance, self-adapting flight path and 
navigation for multi-UAVs [1]. 
Currently, there are two types of UAVs [2, 15]; 
 

• remotely piloted vehicle (RPV); 
• autonomous or pre-programmed. 

 
 RPVs are controlled manually with a stick from a Ground Control Station (GCS) by a 
pilot trained operator-in-the-loop [2]. An example of a RPV is the Predator, an UAV that can 
operate 24 hours, flying in a straight line up to 400 miles away from the GCS at a medium-
altitude (15,000 ft, up to maximum 25,000 ft). The time delay between the GCS operator 
command and Predator command execution is a fraction of a second. For this reason, two 
airplanes (two Predators or a Predator and a manned aircraft) operating in the same area have 
to maintain a significant clearance to avoid collision. As a medium-altitude UAV, Predator 
flies at a height range used by manned aircraft. Moreover, multiple Predators controlled by an 
operator-in-the-loop require significant bandwidth for monitoring and control. Out of 60 units, 
19 have been lost because of mishaps or over enemy territory. Operator errors typically occur 
at landing.  Position and orientation of the aircraft with regard to the ground is not available to 
the operator for landing and landing failures often occur. During flight, if the communication 
and control between the GCS and the aircraft is lost, the aircraft is commanded to start to fly 
back home, but without possibility to be monitored and with limited capability to succeed.  
 
 Autonomous or pre-programmed UAVs use an onboard automatic-controller-in-the-
loop for guidance and navigation. Monitoring and mission command modifications are 
achieved off-line by the operator of the GCS.  An example of an autonomous UAV is Global 
Hawk, a UAV that can operate 35 hours, flying on a given path, along given way points, at a 
high-altitude (over 65,000 ft)[2].  In this case, two airplanes can operate in the same area 
maintaining a significant clearance to avoid collision. As a high-altitude UAV, Global Hawk 
flies at a height range above that used by manned aircraft.  Global Hawk achieved across-
Atlantic and across-Pacific autonomous flights [2]. 
 
 Multiple UAVs operating in the same environment with other military airborne and 
ground vehicles and systems require development for improving mission effectiveness, 
conceptualization of future capabilities, training of future force etc. These tasks require a 
synthetic environment containing cooperative models of UAVs, other military airborne and 
ground vehicles and systems. The result can be an integrated air picture [3, 5].  Multiple 
UAVs operating in the same environment can be described as swarming UAVs. 
 
 In general, swarming entities represent autonomous units that can gather from 
different locations, act together and then disperse [4].  Swarming entities are decentralized, 
are tolerant to variances of the units or to addition/deletion of units [4].  The behavior of 
swarming entities can be adopted as a model for coordinating multiple UAVs.  For the 
simulation of UAVs and of the environment for reconnaissance and surveillance a typical 
system is the Multiple Unified Simulation Environment (MUSE) used by DoD [6].  UAVs 
simulated are Predator, Hunter, Shadow and Pioneer. The simulator contains 6-DOF models 
of these UAVs and the data link including the sensors controlled from the Ground Station. 
The 6-DOF autopilot model has inputs regarding min/max air speeds, climb and turn rates etc. 
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1.2   UAV Systems  
 UAV systems consist of several UAVs and a Ground Control Station. Typically, a 
control station monitors and commands several UAVs and has two operators, one dedicated to 
UAVs flight and the other to UAV payload [7,8]. Aircraft heading and location on the digital 
map are displayed together with a vehicle control panel. Operator commands can be entered 
using flight and payload joysticks to steer the vehicle and to control the surveillance camera 
[9].  
 
 Basic characteristics of UAVs are readily available [10,11]. Numerous industrialized 
countries offer UAVs, both fixed wing and VTOL. Prepackaged flight control systems are 
also available for UAV control and data link with the ground station. Such a flight control 
system can include [11-13]: 

three-axis stabilization 

integrated INS/GPS 

3-D auto-navigation 

air data sensor suite 

I/O: analog, digital serial port, PWM, etc 

Onboard data logging, etc. 

 
 The block diagram of the overall UAV flight control system is shown in Fig. 1.1 [15, 
17, 46]. The control system shown consists of Multi Input Multi Output  (MIMO) inner loop 
and MIMO outer loop. The inner loop has the purpose to increase static stability of the aircraft 
to various flight perturbations, as for example wind, fast maneuvers etc. and is also called 
Stability Augmentation System (SAS) [17]. Outer loop is a feedback control loop designed for 
the aircraft to achieve the preplanned 3-D trajectory received by the Guidance controller from 
the Ground Control Station or Mission Planning and Control Station [15]. It consists in a 
closed loop for attitude control, inside another closed loop for flight path control. [17] 
 
Inner loop contains: 

• Body motion sensors, for example, rate gyros for pitch, yaw and roll rates, 
accelerometers, etc; 

• Inner loop flight controller, which actually is divided into a single loop controller for 
the various longitudinal motion and lateral motion stabilization loops; 

• Actuators for control surfaces deflections, 
• UAV dynamics. 

 
Outer loop contains : 

• Flight sensors, which can be contained in an integrated INS/GPS and can also be used 
as body motion sensors; 

• State estimator, which uses various sensors, possibly redundant, to estimate UAV 
states; 
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• Guidance controller, which actually is divided in the attitude controller and flight path 
control; 

• Inner loop. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.1 UAV conventional flight control system 
 
 Multiple UAVs require sensors, control and communication systems that not only 
achieve the mission-designated trajectory, but also permit coordinated flight with collision 
avoidance and efficient group flight. Formation flight or swarming UAVs are achievable in 
unmanned operation based only on extra control loops.  
 
 In Fig. 1.2 is shown the block diagram of the control systems for two UAVs with 
collision avoidance capability. For this purpose, each UAV has to be equipped with range 
sensors able to measure relative distance to other UAVs, or to other obstacles that have to be 
avoided. The signals from these range sensors are sent to the UAV guidance controller for 
modifying the preplanned trajectory to avoid collision. The ground control station has to 
receive information about collision avoidance occurrences and preplanned path modifications, 
possibly for coordinating collision avoidance actions.  
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Fig. 1.2. Control system of two UAVs with collision avoidance capability 
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difficulties of finding a safe modified trajectory. For n flying obstacles, the total number N of 
possible collisions of two flying objects at a time in group flight is 
 
N = Cn

2 = n! / (k! (n-k)!) 
 
For n =5 
 
N = 5! / (2! 3!) = 10 
 
and the value of N increases rapidly with n.  
 
 Aircraft flight controllers are of various levels of complexity, particularly for high 
performance fighters and for large commercial airplanes. String dynamics instability has also 
to be analyzed for group flight, because of similar phenomena. 
 
 UAV flight control will be presented based on structures of the Piccolo (a complete 
integrated avionics systems for small UAVs [76]) and AeroSim (an aeronautical simulation 
blockset with aircraft model demos for Aerosonde UAV [77]). 
 
 The focus on these two structures permits a consistent presentation of UAV 
controllers valid for various small to tactical UAVs.  Controller design and simulation is 
based on UAV models, presented for reference in the next two paragraphs. 
 

1.3   UAV Models for Controller Design  
Longitudinal and Lateral Dynamics 
 
 Static stability refers to static trim conditions, i.e. to an equilibrium point, for steady 
flight, characterized by zero accelerations in all six body DOFs, in body coordinates X, Y, Z 
directions and roll, pitch and yaw Φ, Θ and Ψ angular displacements [17, 20].  Steady flight 
conditions are given by X0, Y0, Z0, Φ0, Θ0 and Ψ0 about which small perturbations x, y, z and 
φ, θ and ψ are defined. The corresponding perturbation velocities are u, v, w and p,q,r about 
steady flight values U0, V0, Z0, W0, P0, Q0 and R0.  Static stability with regard to an 
equilibrium point requires the body response to a transient perturbation by returning to the 
equilibrium point.  
 
 An automatic linear controller for stabilization, or the stabilization autopilot, is 
designed for [17]:  

• straight flight, with zero roll and yaw angular velocities (dΦ/dt)0 = 0   and (dΨ/dt)0 
=0; 

• symmetric flight, for zero Y axis velocity V0 = 0 and zero yaw angle  Ψ0 =0; 
• wings level flight, zero roll angle, Φ0 = 0. 

 
 Dives and climbs with wings level and pull-ups without sideslipping are cases of 
symmetric flight. 
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 Translational and rotational dynamics are given by Newton-Euler equations, for mass 
m and moments of inertia Ixx , Ixz ,Iyy and Izz , and for trimmed flight state P0=0, Q0 =0 and R0 
=0  [17]: 
 
m(du/dt + W0 q – θ g cos Θ0 ) = Fx 
 
m(dv/dt + U0 r – W0 p –  φ g cos Θ0 ) = Fy 
 
m(dw/dt - U0 q + θ g sin Θ0 ) = Fz 
 
Ixx dp/dt – Ixz dr/dt = mx 
 
Iyy dq/dt = my 
 
Izz dr/dt – Ixz pr/dt = mz 
 
These equations represent a 6-DOF UAV model for trim conditions. 
 
 The conversion of body coordinate angular velocities p, q, and r into earth axis 
angular velocities dφ/dt, dθ/dt and dψ/dt is obtained using Euler angles Φ0, Θ0 and Ψ0 [17, 
18] 
 
 dφ/dt = q  
 
 dθ/dt = p  + r tan Θ0 
 
 dψ/dt = r /cos Θ0 
 
 The above nine ordinary differential equations represent the trimmed UAV model. Fx 

, Fy  , Fz , mx, my , and  mz are perturbed external forces and moments that are functions of 
time, motion variables and control surface deflections calculated using stability coefficients.  
Longitudinal and lateral dynamics are, in practice, decoupled. 
 
 Static stability is analyzed and augmented separately for: 

a) longitudinal dynamics, with regard to X, Z and Θ axis; 
b) lateral dynamics, with regard to Y, Φ and Ψ  axis. 

 
a) Longitudinal dynamic equations are: 
 
m(du/dt + W0 q – θ g cos Θ0 ) = Fx 
 
m(dw/dt - U0 q + θ g sin Θ0 ) = Fz  
 
Iyy dq/dt = my  
 
or, in state space format 
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du/dt = - W0 q +θ g cos Θ0  + Fx /m 
 
dw/dt  =   U0 q - θ g sin Θ0  + Fz /m 
 
dq/dt = my / Iyy 
 
dθ/dt = q 
 
where, external perturbation forces Fx and Fz and moment my are linearly approximated from 
a Taylor series by  using significant stability derivatives: 
 
Xu = (1/m) d Fx / du 
 
Xw = (1/m) d Fx / dw 
 
Xδth = (1/m) dFx / dδth  
 
Zu = (1/m) dFz / du 
 
Zw = (1/m) dFz / dw 
 
ZδE = (1/m) dFz / dδE 
 
Zδth = (1/m) dFz / dδth 
 
Mu = (1/ Iyy) dmy / du 
 
Mw = (1/ Iyy) dmy / dw 
 
Mdw/dt = (1/ Iyy) dmy / d(dw/dt) 
 
Mq= (1/ Iyy) dmy / dq 
 
MδE = (1/ Iyy) dmy / dδE 
 
Mδth = (1/ Iyy) dmy / dδth 
 
where δE is elevator deflection and  δth is the change of thrust. 
 
State equations for longitudinal dynamics become: 
 
du/dt = - W0 q +θ g cos Θ0  + Xu u + Xw w + Xδth δth 
 
dw/dt  =   U0 q - θ g sin Θ0  + Zu u + Zw w+ ZδE δE  + Zδth δth 
 
dq/dt =     Mu u + Mww + Mdw/dt (dw/dt) + Mq q+ MδE  δE  + Mδth δth 
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dθ/dt = q 
 
or, in state space matrix form [17]: 
 
dxL/dt = AL xL + BL uL 
 
yL = CL xL 
 
where, the state vector is 
xL = [u  w  q  θ]T 
 
the output vector is chosen 
yL = [δE    δth ] T 
 
and the matrices AL, BL and CL result directly from the above four state equations. 
 
 From the above state space equation we can calculate the transfer function u(s) / δE 
(s).  A fixed wing aircraft containing a positive zero indicates a nonminimum phase system. 
In this case a step input  δE (s) results in a undershooting u(t). Open loop dynamics of UAV 
with limited static stability containing nonminimum phase subsystems can be improved by 
stability augmentation closed loop systems as part of the autopilots. 
 
 
) Lateral dynamic equations are: 
 
m(dv/dt + U0 r – W0 p –  φ g cos Θ0 ) = Fy 
 
Ixx dp/dt – Ixz dr/dt = mx 
 
Izz dr/dt – Ixz pr/dt = mz 
 
d φ / dt = p + r tan Θ0 
 
dψ/dt = r /cos Θ0 
 
 Using the same sequence of operations as for the longitudinal dynamic equations, the 
state space matrix form is obtained as [17]: 
 
Dxl/dt = Al xl + Bl ul 
 
yl = CL xl 
 
where, the state vector is 
xl = [v   p   r   φ   ψ]T 
 
the output vector can be chosen as  chosen 
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yl = [δA    δR ] T 
 
where  δA is aileron deflection and δR is rudder deflection. 
 
 Similarly, matrices Al, Bl and Cl result from the above five state equations [17]. 
 

UAV 6-DOF Model for Trim Conditions in Matrix Form 
 
 Combining the above longitudinal and lateral dynamics equations, the overall trim 
condition equations for a 6-DOF UAV model result as, 
 
dx/dt = A x + Bu 
 
y  = C  x  
 
where, the state vector is 
x  = [u  w  q  θ v   p   r   φ   ψ]T 
 
the output vector can be chosen as 
y  = [δE    δth   δA    δR] T 
 
and matrices A, B and C result directly from the above AL, BL and CL  and Al, Bl and Cl 
matrices.  This linear model for trim conditions can be seen as a linearized form of the UAV 
6-DOF nonlinear model [17, 18, 75] 
 
dx/dt = f(x) + g( x) u  
 
y  = g (x)  
 
 The UAV 6-DOF Model for Trim Conditions is used for the design of linear UAV 
controllers, while the nonlinear one is used for the design of nonlinear controllers and for the 
test of controllers in simulations. 
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2.   Review of Linear Controller Design for Aircraft 

2.1   Automatic Linear Controllers for Stabilization 

Inner Loop Control System 

 In Fig. 1.1, the UAV flight control system contains the inner loop control system 
shown in Fig. 2.1. This control system consists of several single loop controllers which will be 
analyzed in this chapter. 

 

 

 

Fi 

 

 

 

 

 

Fig. 2.1   Inner loop control system 

 
 Modern aircrafts, including UAVs are designed to achieve high maneuverability, low 
air drag, low fuel consumption, lightweight etc. These requirements lead to aircrafts that are 
lightly damped or unstable [76].  This limited static stability requires closed loop control for 
stability augmentation [14,16-18, 20]. Moreover, right plane zeros of the aircraft open loop 
transfer function indicate nonminimum phase systems that require dynamics modification by 
including it in a closed loop system designed for this purpose [17, 18]. 
 
 Three inner loop controllers are required to add damping for stability augmentation: 

• pitch damper 
• yaw damper 
• roll damper 

 
 These inner loop controllers can be designed based on the UAV linear models for 
trim conditions using classic control methods for linear systems, for example pole placement, 
root locus etc. [17] 
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Pitch Damper 

 Fig. 2.2 shows a P-controller, with proportional gain kpE, for the augmentation of the 
pitch damping by introducing a pitch rate feedback.  Pitch transfer function θ (s) / Iθ (s) will 
have in this case extra damping because of pitch rate q feedback in the P-control loop with 
the controller gain kpE.  For the design of the P-controller, longitudinal dynamics model for 
trim conditions can be used [18]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2 Pitch damper 

 

Yaw Damper 

 Fig. 2.3 shows a P-controller, with proportional gain kpR, for the augmentation of the 
yaw damping by introducing a yaw rate feedback.  
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Fig. 2.3 Yaw damper 

 Yaw transfer function ψ (s) / Iψ (s) will have in this case extra damping because of 
yaw rate r feedback in the P-control loop with the controller gain kpR .  For the design of the 
P-controller, a lateral dynamics model for trim conditions can be used [18]. 
 

Roll Damper 

 Fig. 2.4 shows a P-controller, with proportional gain kpA, for the augmentation of the 
roll damping by introducing a roll rate feedback. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.4 Roll damper 
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 Roll transfer function φ (s) / Iφ (s) will have in this case extra damping because of  roll 
rate p feedback in the P-control loop with the controller gain kpA.  For the design of the P-
controler, lateral dynamics model for trim conditions can be used [18]. 

2.2   Automatic Linear Controller for Navigation 
 Specific to UAVs is the availability of automatic controllers for navigation. Various 
levels of limited automatic control for navigation are also available for aircrafts under pilot 
closed loop, while modern UAVs have the option of complete automatic control for 
navigation, with the possibility of manual control overriding from the Ground Control 
Station. 
Fig. 2.5 shows a generic block diagram of the outer loop control for an UAV. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5   Outer loop controller system 

 
 The UAV flight trajectory is the result of a GCS Flight plan list of Waypoints with 
associated latitude, longitude and altitude and the desired airspeed. This flight plan is 
transmitted to the UAV avionics for storage and eventual execution.  In case of requests for 
flight plan changes, the request, in the case of the Piccolo avionics system, has to be 
transmitted back to the GCS and the modified flight plan has to be transmitted back to the 
UAV avionics [76].  
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Fig. 2.6   Flight plan 
 

 For each pair of waypoints, the associated latitude, longitude and altitude and the 
desired airspeed are used for the computation of commands: 
 
U(c) =True airspeed command [m/s] 

h(c)  =Altitude command [m] 

t(c) = Turn rate command [deg /s] 

T(c) = path planned 

The computation uses the measurements from GPS, INS, Pressure sensors: 

- ground speed [m/s] 

- airspeed [m/s] 

- altitude, longitude, altitude [m] 

- roll, pitch, yaw rates [deg/s] 

- body frame accelerations [m/s2 ] 

- direction [deg] 

- dynamic pressure [kPa] 

- barometric pressure [kPa]. 
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Fig. 2.7 UAV commands computation 
 

 

For a small UAV, the navigation controller can consist of four closed loop controllers [76]: 
 

- airspeed hold; 

- altitude hold; 

- turn rate control; 

- line tracking control. 
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Airspeed Hold 

Fig. 2.8 shows airspeed hold closed loop controller [17]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.8 Aerospeed hold 
 

 In this feedback controller, true airspeed command, U(c) [m/s] is compared to the 
Estimated true airspeed, uM , and the error eU is the input to a PID controller to generate the 
command for a pitch rate q control loop, the Pitch damper is presented in Fig. 2.2. 
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Altitude Hold 
 
Fig. 2.9 shows the altitude hold closed loop controller [18]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.9 Altitude hold 
 

 In this feedback controller, altitude command, h(c) [m] is compared to the estimated 
altitude, hM , and the error eh is the input to a PID controller to generate the command for a 
pitch rate q control loop, the Pitch damper is presented in Fig. 2.2. 
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Turn Rate Control 
 
Fig. 2.10 shows the turn rate closed loop controller [17, 76]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.10 Turn rate control 
 

 In this feedback controller, the turn rate command, t(c) [deg/s] is compared to the 
estimated turn rate, and the error ea is the input to a PD controller to generate the command for 
a yaw rate r control loop using the ailerons. 
 
Line Tracking Control 
 
Fig. 2.11 shows the line tracking closed loop controller [17, 76]. 
 
The planned path to track is either circular or straight lines [76]: 
 
-circle between two waypoints 
 
-pointing to a waypoint 
 
-heading hold. 
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Fig. 2.11 Line tracker control 
 
 

 Tracking error results from comparing the planned path with the UAV position and 
attitude. A PID controller has tracking error input and provides the turn rate command t(c) 

[deg/s] for the turn rate controller, is presented in Fig. 2.10. 

 

Autopilot Limits  
 
 The linear controllers presented so far do not incorporate limit ranges that are inherent 
and specific to each UAV design. These limits refer to the above four closed loop controllers 
[76]: 
 
-dynamic pressure 
 
-altitude 
 
-bank angle 
 
-elevator, aileron, rudder and throttle angular deflections.  
 
 The avoidance of these limits requires extensive simulation tests of the controllers 
using a nonlinear UAV model and a Hardware-in-the- Loop simulator. More advanced control 
approaches, presented in subsequent chapters, can provide controllers that satisfy such limits. 
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Gain Scheduling Controllers 
 
 Constant gain controllers are not satisfactory for all flight conditions. Improvements 
in flight performance are obtained using gain scheduling that provides different controller 
gains for various flight conditions [19]. 
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3. Comparative Analysis of Flight, Collision Avoidance 
and Mission Control Approaches for Swarming UAVs 
 

3.1   Typical Approaches for Single UAV Flight Control using 
Geometric, Kinematic, Dynamic, Neural Networks, and Fuzzy 
Control Methods 
 The analysis single UAV flight advanced controllers in chapter 3.1 will be carried out 
using the generic flight controller structure shown in Fig. 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3.1 UAV advanced flight controller structure 
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 Compared to the UAV conventional flight controller structure, shown in Fig. 1.1 and 
analyzed in Ch. 2, an advanced state estimator, for example an Extended Kalman Filter, 
requiring state measurements and control commands, is included and the estimated states are 
made available to the Kinematic model for body motion variables and the Kinematic model 
for UAV trajectories. Moreover, both the inner loop flight controller and the Navigation 
controller are more complex to achieve efficient single UAV flight taking into account the 
effects of environmental perturbations, parametric and measurement uncertainties, control, 
state variable and actuators output limitations etc.   
 
 Various examples of Optimal, Neural Networks and Fuzzy Control Methods will be 
analyzed in the subsequent sections. 
 
 
Optimal flight control  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.2 LQ optimal control for the inner loop 
 
 
 In Fig. 3.2 is shown a generic diagram for the analysis of the optimal controller for 
the inner loop presented in [17, 19, 46, 54].  A Linear Quadratic (LQ) controller, for gust 
perturbation alleviation, is presented by D. McLean [17].  Only longitudinal motion will be 
presented here. 
 
 The state vector for longitudinal motion, X, is a [12x 1] matrix containing: 
 

- the angle of attack 
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- pitch rate 
- vertical displacements of the first five bending modes and their derivatives. 

 
 The control vector is given by a u = δ(c) [2 x 1] 
 

- elevator deflection 
- horizontal canard deflection. 

  
 For a linearized aircraft model with 12 states,  
 
dx/dt = A x + Bu 
 
y  = C  x + Du 
 
 Full state LQ controller optimal gains K [2 x 12] can be calculated.  In the linearized 
model, the first two equations refer to the angle of attack and the pitch rate, while the 
remaining ten equations refer to the vertical displacements of the first five bending modes and 
their derivatives. 
 
 Full state feedback control is given by  
 
δ(c)  = K X~ 
 
 In this case, estimated states X~ can be obtained from flight sensors noisy outputs y 
using, weighted least square method, optimal linear estimators or observers and Kalman-Bucy 
filters [17]. 
 
 Simulation results show the reduction of the acceleration response of the aircraft to 
gust perturbation input when using this LQ controller [17].  A Linear Quadratic Gaussian 
(LQG) controller, for gust perturbation alleviation, is presented by in [54].  Random gust 
perturbation alleviation in the case of random noise ν in the sensor measurements y 
transforms the previous LQ controller into a Linear Quadratic Gausssian (LQG) controller, as 
shown in Fig. 3.3 [54]. 
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Fig. 3.3 LQG optimal controller for the inner loop 

 The design of the LQG controller is based on the linearized aircraft model for 
longitudinal dynamics with the 12 states presented above, augmented with additive terms 
accounting for the random gust perturbation Ew and random noise ν [2 x 1] in sensor 
measurements [54] 
 
dx/dt = A x + Bu + Ew 
 
y  = C  x + Du + ν 
 
 The model for the random gust w is obtained from white noise by filtering in 
accordance with the power spectrum density of the gust perturbation input. Gusts are assumed 
applied in three different body stations.  The Kalman filter gain matrix KK  is calculated using 
the above linear model of the aircraft.  Simulation results show a significant reduction of the 
vertical acceleration response of the aircraft to gust perturbation input when using this LQ 
controller [54]. 
 
 Linear quadratic controllers ignore control constraints, for example actuator limits 
and deflection rate limits for the control surfaces [19]. A feasible control law that accounts for 
constraints might require a nonlinear controller, but real-time implementation requirements 
might be in conflict with the computation time in the case that numerous iterations might be 
required for obtaining a numerical solution.  
 
 A compromise is possible in a two step controller design approach, see Ch. 75 in [19] 
 

- first step, LQ solution 
- second step, linear programming (LP) formulation accounting for actuator saturation 
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 In the case that there is no LP feasible solution, the LQ problem is reformulated for 
less restrictive penalty parameters for the optimization criterion until a feasible solution 
results.  Robustness of the optimal controllers is highly dependent on the uncertainty of model 
parameters, in particular the control derivatives. The uncertainty can be accounted for by 
assuming errors ∆A and ∆B for the matrices A and B of the linearized model used for LQ 
controller design. These errors have an effect on the closed loop poles in the root locus plot, 
and obviously, the displacement of any pole on the right hand side of the root locus indicates 
system instability [46].  
  
 
Neural Control 
 
 A Neural Networks (NN) approach is frequently considered for system modeling and 
control when system dynamics is not completely known or it is not possible to model it 
analytically for simulations and real time control implementation. NN approach requires first 
a large set of data linking a rich variety of inputs and corresponding outputs versus time.  This 
set of data can be used to train a NN consisting of layers of nodes that calculate a weighted 
sum and inputs and rescales nonlinearly the result of the sum into a {-1 to 1} or {0 to 1} real 
number domain. Training results are a set of values for the weights of the sums that minimize 
a chosen criterion, for example square root sum of squared differences between set of data 
output values and the NN outputs for the same inputs [30, 79]. 
 
 Efficient controller design requires a suitable system model and, in the case of 
systems that do not have proper analytical models, NN models represent an attractive 
alternative. Moreover, model based control can be difficult to implement when real time 
constraints make it impossible to solve numerically the analytical model within each 
computation cycle time. Again, NN approach is an attractive alternative, given that 
calculating the output of NN is normally not computationally time consuming.  UAV flight 
control and collision avoidance require often model based controllers and, for this reason NN 
approach is of particular interest. 
 
 Fig. 3.4 shows a generic block diagram of a controller using Neural Networks. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.4 Generic block diagram of a controller using Neural Networks (NN) 
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 In this block diagram, the feedforward controller uses a NN model based inverse 
dynamics that gives the system commands Uff

(c) for the reference input r(t) [82].  In the 
feedback control loop, another NN  model of the inverse dynamics gives system commands 
Ufb

(c) for the feedback controller commands u(c) . In this configuration, feedforward controller 
uses a NN model based inverse dynamics providing basic commands for the system such that 
system output x(t) tracks closely the reference r(t). Modeling errors and perturbations result in 
errors r(t) – y(t), and a feedback loop controller is used to regulate the system. The design of 
the feedback controller for a nonlinear system is facilitated by the inclusion in the feedback 
control loop of the other NN  model of the inverse dynamics that has the purpose to linearize 
the overall system as seen by the feedback controller. This approach was applied to helicopter 
flight control [82]. This is only a generic configuration and variations of this block diagram 
are found in various NN based control schemes. 
 
 Fig. 3.5 shows a traffic flow controller using Neural Networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.5 Traffic flow controller using Neural Networks  
 
 Traffic control is based on the speed commands to the vehicles computed such that 
the actual traffic density will be close to the desired traffic density [81].  
 
 Fig. 3.6 shows a Model Predictive Controller (MPC) using a Neural Networks model. 
 
 Model Predictive Controller in this case uses a NN system model. The inputs to the 
MPC controller are the reference r(t) and the disturbance y - yM  , calculated using the system 
output y and the NN system model output yM [80].  Fig. 3.7 shows a self-tuning regulator 
using a Neural Networks model.  NN system model parameters identifier uses as inputs the 
command U(c) and system output y and provides as output system model parameters pM . These 
parameters are used to compute the corresponding controller parameters pC . This approach 
achieves self-regulation of the feedback controller in accordance with the changes in system 
output y [79]. 
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Fig. 3.6 Model Predictive Controller (MPC) using a Neural Networks model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3.7 Self-tuning regulator using a Neural Networks model 

 Fig. 3.8 shows a heading controller using gain scheduling based on a Neural 
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v and change whenever system speed changes. This controller achieves desired control 
performance [30]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3.8 Heading controller using gain scheduling based on a Neural Networks model 

Fig. 3.9 shows a UAV flight control using a Neural Network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.9 UAV flight control using a Neural Network 
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 This inner loop controller uses a model based dynamic inversion for the linearizarion 
of the UAV flight dynamics. Given the unmodelled dynamics and model parameter 
uncertainty, the linearization is only partial and to improve linearizarion of a NN model of 
dynamic inversion is included [57]. 
 
 Based on the above examples, the NN approach proves to be a very interesting 
solution to real-time control problems for nonlinear systems, as for example UAVs. 
 
Fuzzy Control  
 
 Any controller design incorporates heuristic rules that enhance controller 
performance. A fuzzy controller incorporates explicitly qualitative knowledge of controller 
designers. 
Fig. 3.10 shows a basic fuzzy controller [29]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.10 Basic fuzzy controller 

 The core of this controller is the Fuzzy Inference Engine based on If –Then inference. 
Expert knowledge in qualitative form can be incorporated in the Fuzzy controller by 
Fuzzification and Defuzzification.  Fuzzification transforms linguistic values in a quantative 
from using membership functions.  The performance of the basic fuzzy controller remains 
however sensitive to changes in system dynamics and parameter variation. This sensitivity 
can be addressed by including an autotuning algorithm which will retune the fuzzy controller, 
as shown in Fig. 3.11, to react to situations not initially foreseen [29]. Such a reconfigurable 
controller was proposed for aircraft flight control [83]. 
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Fig. 3.11 Autotuned fuzzy controller 
 

 A similar selftuning fuzzy controller, shown in Fig. 3.12, was proposed for missile 
guidance [55].  Simulation results show very good performance in moving target interception. 
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Fig. 3.12 Autotuned fuzzy controller for guidance 
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3.2   Swarming UAV Approaches for Path Planning with 
Collision Avoidance with Fixed Obstacles 
 Approaches for path planning and collision avoidance for swarming UAVs depend on 
swarming modality and the type of obstacles required to be taken into account. The following 
typical types are of major interest: 

• Fixed obstacles, known at path planning stage;  
• Fixed obstacles, identified during flight; 
• Moving aerial vehicles or obstacles known before flight; 
• Moving obstacles, identified during flight; 

 
This section will analyze the first two types, referring to fixed obstacles.  And next section 
will analyze the last two types, referring to moving obstacles. 
 
Path Planning for Collision Avoidance with Fixed Obstacles, Known at Path 
Planning Stage 
 
 Numerous papers, authored by Dr. Van Dyke Parunak and collaborators, proposed the 
use of digital pheromones for swarming UAV guidance and collision avoidance [70-74]. The 
approach proposed in these papers is inspired by biological swarming coordination solutions, 
in particular from the coordinated activities of ants and other insects, based on sensing and 
depositing pheromones, i.e. chemical scent markers.  In order to imitate this strategy, digital 
pheromones are proposed for swarming UAV guidance and collision avoidance. These digital 
pheromones are computer generated markers intended to guide the UAVs in an environment 
with obstacles.  
 
 Dr. Eric Bonabeau made a relevant comment regarding the fact that several human 
operators are presently needed to control a single UAV and we would like to have several, if 
not thousands of micro UAVs controlled by one operator [72].  The proposed solution for 
generating digital pheromones is the artificial potential field approach from robotics [52]. 
Obstacles in robotic workspace are artificially assumed surrounded by repulsive potential 
fields, similar to same polarity electric field.  In this electric field case, objects charged with 
the same polarity are subject to physically generated repulsive forces and this permits 
avoidance of moving object collisions.  In the case of moving robot arms or mobile robots, the 
potential fields are artificial and obviously do not generate repulsive forces for collision 
avoidance.  In the robotics case, the collision with obstacles is avoided using robot actuators 
under model based control.  A dynamic model in operational space of the robot includes not 
only physical forces and torques acting on the arm (gravity, actuators torques, Coriolis forces, 
drag forces etc) but also repulsive forces assumed artificially as acting on the robot structure. 
The operational space dynamic model plus a kinematic model between operational space and 
actuator space permit one to apply commands to the actuators such that not only physical 
forces and torques are realized, but the artificial potential field is also realized to simulate 
repulsive forces between the robot and the obstacles. The nonlinear dependence between the 
proposed artificial potential fields and their realization using robot actuators has to be taken 
into account in the vehicle motion control and results in a dynamic model based robot 
controller. Besides this, the construction of artificial potential fields for planning robot paths 
in an environment with obstacles, is another complex task [52]. The construction of artificial 
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potential fields is different for the case of fixed and moving obstacles. Reference [52], used by 
Dr. Van Dyke Parunak and collaborators for the creation of digital pheromones, was 
developed for stationary obstacles (I quote from page 515, “our naive assumptions-stationary 
obstacles, fixed destination, perfect information, ideal sensors and ideal bounded-torque 
actuators, are themselves unrealistic, and their relaxation is imperative in the long run”). 
These assumptions permitted, however, the construction of artificial potential fields for an 
environment with complex fixed obstacles.  There are other publications presenting artificial 
potential fields for moving obstacles, but only for simple and very limited number of 
obstacles. Moreover, the real time robot control with avoidance of collision with moving 
obstacles using artificial potential fields is computationally very demanding and requires 
exact feedback linearization of the robot nonlinear dynamics [39, 40].  
 
 Dr. Van Dyke Parunak and collaborators assumed however that the artificial potential 
field approach presented in reference [52] is applicable also for moving obstacles, in 
particular for swarming UAVs. This assumption requires further analysis and extensive 
theoretical development to lead to a applicable solution. This issue will be further analysed in 
Ch. 4. In the form published up to this time, the approach proposed by Dr. Van Dyke Parunak 
and collaborators is applicable only for path planning in the presence of known fixed 
obstacles and cannot be applied to swarming UAVs unless it is developed further.  
 
 Similarly, in reference [69], solutions are presented to group behaviour control for a 
robotic team for providing high level commands for military behaviours as, for example: 
assault a position, formation moves or other group movements. This permits one to address 
issues regarding requirements for communications, terrain reasoning, reasoning under 
uncertainty and missions for teams with large numbers of robots (up to several thousand). 
Lower level commands for collision avoidance, slippage avoidance, waypoint choice are left 
for technical solutions to be developed elsewhere.  The split between high-level team strategy 
and low-level vehicle control results, however, in solutions which are not practical either at 
the strategic level or at the technical level.  Several other contributions presented later will 
encompass a larger view covering, at least partly, both strategic and technical aspects. 
 
Path Planning for Collision Avoidance with Fixed Obstacles, Unknown at Path 
Planning Stage 
 
 An interesting solution for guidance strategy and collision avoidance with fixed 
obstacles, not known at the path planning stage, is proposed in [53]. For the convenience of 
the analysis, this solution will be presented first for guidance in absence of obstacles (Fig. 
3.13) and then for the obstacle collision avoidance case (Fig. 4.14). 
 
 In Fig. 3.13 is shown the block diagram for Proportional Navigation guidance in the 
absence of obstacles [18, 53]. In this case, the radar gives no return for a given cut-off range 
Rc . The Inertial Navigation System (INS) provides vehicle current position (x, y) velocity 
amplitude and angle (v, α) in an inertial reference system. Given the target position xg  , yg , a 
Cartesian to polar coordinates transformation gives the target polar coordinates Rg , θ relative 
to the vehicle. The difference α-θ is a guidance system error to be reduced to zero by control 
such that the velocity vector direction will coincide with target Line Of Sight (LOS). 
 
 Proportional Navigation guidance law [18, 53], provides a lateral acceleration  
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agd = - Cgd [v sin (α-θ)/Rg] 
 
that tends to align the velocity vector with the target LOS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.13 Block diagram for Proportional Navigation guidance in the absence of obstacles 
 
 The lateral acceleration command ac is limited to amax . If the amax limit is not reached, 
ac coincides with agd .  
 
 The Proportional Navigation guidance law is nonlinear, but for small angles α-θ, a 
linear approximation is acceptable [18]. 
 
 In Fig. 3.14 is shown the block diagram for flight control and collision avoidance with 
fixed obstacles, unknown at the path planning stage [53]. In this case, the radar gives returns, 
for a given cut-off range Rc . 
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Fig. 3.14 Block diagram for flight control and collision avoidance with fixed 
obstacles, unknown at path planning stage 
 
 Based on the radar return, indicating an obstacle within the radar cut-off range Rc ,  a 
Sliding Circle algorithm, calculates geometrically for planar flight the radii Rr  , Rl of the two 
circular paths that closely avoid collision with the obstacles. For each circular path, the lateral 
acceleration for collision avoidance:   
 
avcr = -  v2  /Rr  
 
avcl = v2  /Rl 
 
that provide the centripetal accelerations required to achieve these circular paths. 
 
 RACAGS (Radar Assisted Collision Avoidance / Guidance Strategy), is a switching 
controller that chooses from the three lateral accelerations agd ,avcr or avcl to select the ac  
command after verification of the upper limit amax . After passing the obstacle, when no radar 
return will be issued, the controller is reduced to the one presented in Fig. 3.13. 
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 This approach is further developed to account for obstacles larger than the radar 
detection cone, multiple fixed obstacles and for the 3-D case for obstacle avoidance when 
flying over the obstacle might be preferable to bypassing it in a horizontal circular flight  path.  
 
 This approach is technically more developed than the ones presented so far in this 
section, but still limits the representation of the aerospace vehicle to a point mass. For 
collision avoidance, similar to the approach used in robotics, vehicle geometric dimensions 
are added to the virtual circle surrounding the obstacle. Moreover, the lateral accelerations agd 
, avcr or avcl are assumed realizable as such, i.e. vehicle dynamics and actuator saturation or 
control surfaces constraints are ignored not only during the controller design, but also  for 
simulations. 
 
 An integrated simulation environment for Multi-UAV flight toward fixed targets with 
collision avoidance for fixed obstacles was developed using  MATHWORKS tools [61]. 
MATHWOKS tools needed for this simulator are: 

• MATLAB and Simulink; 
• Stateflow; 
• Virtual Reality Toolbox; 
• DSP Blockset. 

 
 Fig. 3.15 shows the block diagram for this simulator.  
 
 
 
 
 
 
 
 
 
 
                                            
 
 
 
 
 
 
 

Fig. 3.15 Block diagram for the simulation of collision avoidance with fixed obstacles 
 
 An arbitrary number of vehicles can by dynamically simulated in this environment 
using MATLAB /Simulink programming and various numerical solvers. These vehicles can 
move individually, but taking into account the positions and motions of all other vehicles. For 
the simulation of Multi-UAVs, four types of group dynamics, inspired by biological examples 
( flocking birds, herding land animals etc.) are encoded using finite state machine format: 
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• target acquisition; 
• formation keeping. 

 
 The current mode of group dynamics is selected based on the actual states of the 
group of vehicles.  A Dynamic Inversion Controller provides commands to the vehicle for the 
currently active mode of group dynamics.  The fixed targets and obstacles can be changed 
during the simulation by providing their position and radii. The blocks of this simulator are 
not sufficiently documented in this publication for a critical analysis. MATHWORKS offers 
however an Aerospace Blockset for propulsion, control systems, system dynamics and 
actuators for autopilot and guidance system design and closed loop modeling for aircraft. 
 

3.3   Swarming UAV Approaches for Flight Control and 
Collision Avoidance with Moving Obstacles  
 Swarming UAV Collision Avoidance with Moving Obstacles is a topic of intensive 
current research. So far strategic level proposed solutions lack testing on actual nonlinear 
constrained dynamic UAVs while technical contributions lack a strategic viewpoint for 
applying group dynamic strategies  
 
 The analysis in this section will present critically published contributions, using both 
strategic and technical considerations. Fig. 3.16 presents the generic block diagram for the 
analysis of these approaches, for multiple UAVs, presented in this section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.16 Generic block diagram for collision avoidance for multiple UAVs 
 
 
 
 Collision avoidance for an UAV with another UAV in the vicinity requires the 
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R = q-qv 
 
where q and qv are the 3D positions of the two UAVs. 
Multiple UAVs require multiple vectors R. 
Relative position error is  
 
e = Rd - R  
 
where  Rd is the desired relative 3D distance between UAVs. 
 
The resulting commands δ 

(c) from the control law are realized by the actuators as actual 
control surface deflections δ. As a result of δ, the UAV under control changes the q   3D 
position in such a way as to make R tend toward the desired relative distance Rd   and thus 
maintain flight formation and avoid collision. 
 
 The sensory and signal processing needs for estimating relative distance R and the 
design of the control law that provides the commands δ 

(c) for   control surfaces deflections are 
very complex processes that are not in a mature enough stage to guarantee swarming UAV 
flight formation hold and collision avoidance. Contributions analysed in this section solve 
only each part of the problem and their assembly does not seem to have currently all the 
components available for robust swarming UAV flight formation hold and collision 
avoidance. 
 
 Fig. 3.17 shows a Block diagram for the control of the relative distance between two 
spacecrafts using a linear control law combined with a nonlinear feedback adaptive 
compensator [47]. 
 
 Spacecraft dynamics for filtered tracking error r is obtained from 3-D force equations 
for two spacecrafts, a leader and a follower, in the leader’s instantaneously coincident (IC) 
reference frame. In these equations, the 3D force inputs, ul and uf

 , are assumed directly 
realizable, i.e. no dynamic models for actuators and control surface deflections are included 
and no constraints are considered for the actuator outputs and control surface deflections.  As 
a result, any commands for the force inputs, ul and uf

 , are assumed realizable, including the y-
components, in the sideway direction of the wings, were no actuator is active.  
 Subtracting corresponding force equations for each of the three coordinates, the 
relative speed q dynamics equation is obtained. This equation is converted into a dynamic 
equation for the filtered tracking error r, using 
 
r = d/dt (qd – q) + Λ(qd – q)  
 
where qd (t) is the desired relative position.  It can be a function of time. 
 
 This conversion is needed for the adaptive algorithm with a 3x3 diagonal gain matrix 
Γ, used for the estimation θ~ of the parameters and perturbation vector 
 
θ = [mf, mf M G, mf /ml , Fd ]T 
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where,  
ml is leader mass; 
mf is follower mass;  
M is earth mass; 
G  is the universal gravity constant; 
Fd is a 3D perturbation force. 
 
 The controller 3D force command for the follower uf

(c), is obtained from the 
summation of the feedback part Kr, with proportional gain vector K, and a nonlinear adaptive 
compensation part W(ω, R, ul ,q, dq/dt) θ,  
where, 
ω is the angular velocity of the leader about zl axis, assumed constant 
R  is the constant radial distance of the leader from the center of earth.  
 
 
 
 

 

 

 

 

 

 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.17 Block diagram for the control of the relative distance between two spacecrafts 
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 Simulation results show that the follower, starting at 200 m from the leader, is 
successfully moved to settle on a circular qd (t) with radius of 100 m. The successful 
formation hold controller, with follower-leader collision avoidance when both move, has to be 
further tested for applicability to aircrafts by taking into account the constraints for the 
actuators outputs and control surfaces deflections.  The estimation of parameters θ was 
however long, about 25 hours. During this time, the approximate values of the parameters in 
the Wθ~ nonlinear compensation term, and the constant perturbation Fd, led to high tracking 
errors r, of over 50 m. This slow adaptive algorithm for parameters and perturbation θ~ is not 
practical for UAVs. 
 
 Another example of a control of the relative distance between two spacecrafts is the 
pulse based LQ control block diagram shown in Fig. 3.18 [48]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.18 Block diagram for the LQ control of the relative distance between two 
spacecrafts 
 
 In this diagram Γ is the state space representation output matrix. The pulse based LQ 
control produces the uf

(c) command in the form of a 2 min pulse, followed by a 2 or 4 hours of 
zero output. The external disturbance in this case was a sinusoidal solar pressure differential 
Fd (t). For data similar to the data used for the controller shown in Fig. 3.17, the results show 
that the tracking error qd (t) - q (t) stabilizes with a sinusoidal component because of the solar 
pressure differential. The period of the sinusoidal solar pressure differential is shorter than the 
two hour pulse cycle of the controller.  This explains why this perturbation is not rejected.  
Pachter et al. published in 2001 a well-documented PI controller for the relative distance 
between two spacecrafts in tight formation flight [50].  
 
 In the context of this report, where both flight control and group dynamics issues are 
simultaneously analyzed, the merit of this approach is that leader-wing aircraft dynamics 
models for tight formation are used and individual aircraft dynamics as well as formation hold 
and collision avoidance issues are addressed. This approach would be interesting to be 
adapted for swarming UAV control and collision avoidance using more advanced controllers 
than PI control.  This should satisfy specific swarming UAVs requirements. 
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 Fig. 3.19 shows the block diagram for the PI control of the relative distance between 
two aircrafts in tight formation flight.  
 
 In this block diagram: 
 
vw, Ψw, dh w/dt  are 3-D wing model state variables, wing speed, heading and altitude 
vL, ΨL, dhL/dt   are 3-D leader model state variables, wing speed, heading and altitude 
ev = vw - vL ,     eΨ = Ψw - ΨL and  z   =h w - hL are 3D wing-leader relative speed, heading       
and altitude 
 
q is the 3-D vector of relative positions x, y and z,  
 
where, 
x = x w - xL 
y = y w - yL   
z   =h w - hL 
 
qd (t) is the 3-D vector of desired relative positions xd, yd and zd. 
 

 

 

 

 

 
 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.19 Block diagram for the PI control of the relative distance between two aircrafts 
in tight formation flight 
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e(t)= q(t) - qd (t) is the 3D vector of the longitudinal, lateral and heading errors, with                
regard to their desired values.  
vw

(c) , Ψw
(c), h w

 (c) are the 3D wing commands. 
  
 Aircraft parameters refer to the parameters of the 3D dynamics models of the leader 
and the wing aircraft regarding mass and stability derivative coefficients for the speed, 
heading and altitude equations of the respective speed-hold, heading-hold and altitude hold 
autopilots [50]. An important contribution of this paper is the calculation of the new 
corrections for tight formation stability derivatives for the case of the wing flying in the 
vortex of the leader, within 10% of the lead wingspan, to achieve drag reduction and, 
consequently significant reduction in fuel consumption and increase in endurance by 30 %.   
The PI controller was designed using linear perturbation equations obtained by linearizing the 
leader and wing 3-D nonlinear dynamic equations. Simulation results confirmed the 
performance of this approach in tight formation hold and collision avoidance in the presence 
30-degree lead heading changes. The results for wing-leader collision avoidance are relevant 
for UAV collision avoidance with a moving obstacle. 
 
 In Fig. 3.14 from the previous section, was presented an alternative collision 
avoidance approach, but proposed only for the case of fixed obstacles. A more useful 
approach for UAV 3-D local trajectory planning with collision avoidance proposed for both 
fixed and moving obstacles is presented by Sasiadek and Duleba in [51].  
 
 Autonomous navigation can be achieved in this case by splitting the motion planning 
problem into two stages: 

• decision mode; 
• trace mode. 

 
 In decision mode, next step attitude and velocity are determined taking into account 
the distance to the goal, best vehicle orientation and obstacle avoidance. In this mode, 
however, local optimum can occur in the artificial potential field approach to collision 
avoidance. As a result the vehicle can be trapped and stopped permanently away from the 
goal.   

 
 In trace mode, the controller is switched to path tracking along the boundary of the 
obstacle, ultimately tending towards the goal, by temporarily even going away from the goal 
for exiting from a local optimum. The control commands satisfy constraints regarding 
maximum and minimum velocity, maximum acceleration, minimum and maximum 
orientation rate changes and safe distance to the obstacle etc. Simulation results illustrate the 
operation of the proposed approach in trajectory planning and collision avoidance with fixed 
and moving obstacles. 
 
 Cooperative decentralized control schemes for UAVs are presented in [62 – 65]. 
Operational space for the UAVs is partitioned into quadratic cells where targets and obstacles 
can reside and in which, at one time, only one UAV can be present.   In discrete time 
representation, an UAV has the choice of moving into another cell, but in only three 
directions, - 45°, 0° or 45°, to account for maneuverability constraints. The proposed approach 
focuses on Neural Network learning using Bayesian rules to account for sensor random errors. 
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Simulation results illustrate the effect of cooperative search using local sensors and starting 
from an initially uncertain environment. The applicability of this approach has to be 
extensively analyzed using dynamic UAV models to test if the results are relevant for the 
complex tasks of swarming UAVs. 
 
 Another contribution worthwhile to mention is the approach for the rendezvous of 
two UAVs at a preset  relative distance [68]. The approach uses a 3 state kinematic model of 
the UAV and Pontryagin Minimum Principle for deriving the control law for a point of 
constraint. Simulation results show that the two UAVs have smooth trajectories along 
Voronoi line segments and have a coordinated rendezvous before reaching the final 
waypoints. 

3.4   Controller Sensing-Communications Requirements for 
UAV Control and Collision Avoidance  
 Fig. 3.20 shows a schematic diagram for the analysis of sensing-communication 
requirements for control of multi UAVs, simplifying the case to two UAVs.  Each UAV needs 
sensors for flight control and for collision avoidance-formation hold. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.20 Sensing-communication requirements for control of multi UAVs 
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 Flight sensors are needed for the inner loop flight controller and include body motion 
sensors as for example: rate gyros for pitch, yaw and roll, accelerometers etc.  A UAV state 
estimator is usually required to obtain state variable estimations.  Collision avoidance-
formation hold use range sensors able to measure relative distance to the other UAV, or to 
obstacles that have to be avoided.  An integrated INS/GPS can serve both flight sensing needs 
and collision avoidance-formation needs. 
  
 For example, from GPS, INS, pressure sensors, the following quantities can be 
determined: 
- ground speed [m/s] 
- airspeed [m/s] 
- altitude, longitude, altitude [m] 
- roll, pitch, yaw rates [deg/s] 
- body frame accelerations [m/s2 ] 

- direction [deg]  
- dynamic pressure [kPa] 
- barometric pressure [kPa]. 
 
 The ground control station sends guidance commands to the UAVs and receives data 
needed for monitoring.  Besides sensing, swarming UAVs have specific communication 
needs. These needs depend on the approaches chosen for flight control and for collision 
avoidance-formation hold. Range sensing is based on triangulation methodology using 
appropriate onboard sensors. 
Group flight can be organized into two basic structures: 

- leader followers structure; 
- decentralized structure. 

 
 Leader-follower structures were used in several papers analyzed in this report, for 
example in the case of tight formation control [50] and for providing string stability.  
Decentralized structure is promoted by some group dynamics advocates, for example by E. 
Bonabeau [72] and Van Dyke Parunak [73-74]. The problems of decentralized control have, 
however to be addressed, given that string instability can also occur in large decentralized 
structures. 
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4.   Advanced UAV Control Design Issues for 
Swarming UAVs 
 

4.1   Feedback Linearization of UAV Nonlinear Dynamics and 
Controller Design 

Feedback Linearization Approach 
 Nonlinearities of the UAV flight dynamics represent a major difficulty in controller 
and collision avoidance design.  Conventional flight controller design approaches, presented 
in ch. 2, were all based on a locally linearized aircraft model, for trim conditions. As flight 
conditions further from trim occur, the performance of the controller degrades. A tempting 
solution for solving this problem is feedback linearization of UAV nonlinear dynamics, 
which, in principle, results in a global linearization and permit the design of controllers that 
have the same performance for all flight conditions. In practice, model based feedback 
linearization is only partial because of unmodelled dynamics and parameters/states estimation 
uncertainty. 
 
 Moreover, some advanced control approaches are well developed particularly for 
linear systems.  Nonlinear systems require linearization for the design and implementation of 
such controllers. This is the case of model predictive controllers (See Ch. 4.2), that were 
extensively developed for linear systems.  Linearization of the nonlinear dynamics is essential 
for applying MPC on nonlinear systems. 
 
 Feedback linearization can be better presented using a simple example [88]. 
The general form of an affine system is 
 
dx/dt = f(x) + g(x) u                                          

 
The example used for feedback linearization presentation is the vertical position hold of a 

mass m using a controllable magnetic field from an electromagnet, as shown in Fig. 4.1. This 
system can emulate an artificial potential field with the same repulsive force applied to an 
aerial vehicle modeled as a mass m.  
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Fig. 4.1 Vertical position hold using a magnetic suspension system. 

 
 The model considered in this case for the control of magnetic suspension systems 
through non-linear control schemes is that of a single axis system used for maintaining a ball 
at a desired vertical position when it is subjected to external disturbances.  
 
The system shown in Fig. 4.1 can be modeled by a nonlinear equation of motion 
 

m d2h(t)/dt 2 = mg – k(i(t)/h(t))2                                                 (1) 

 

and  a voltage equation for the electric circuit  
                                                                                                               

 L di(t)/dt  = v(t) – Ri(t)                                                          (2)                                    
 
This model is further used for the simplified case in which R=0 and L=1. 
The model can be formulated in the general form of an affine system as follows: 
 

dx1 /dt = x2                                                                        (3)                            
 

dx2 /dt = – (k/m) x3
2 / x1

2 + g                                                         (4)     
 

dx3 /dt = u                                                                         (5) 
 
where:  

x1 = h, x2 = dh /dt  and x3 = i.                                                        (6) 
 
In this case the control variable is  
 

u = di/dt                                                                           (7)          
 
 Fig. 4.2 shows the feedback linearization scheme for vertical position hold of a 
magnetically levitated mass, modeled by the above 3 ODE affine model, with input u. 
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Fig. 4.2 Feedback linearization scheme for vertical position hold of a magnetically levitated 
mass 
 
Feedback linearization requires: 

• a state transformation z = T(x) 
• a nonlinear input v transformation for the calculation of the actual control input u. 

 
For an affine system, a state transformation z = T(x) results from: 
 
a) for the general condition for obtaining the state transformation z = T(x) 
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choosing a simple solution, for example 
 

x1  = T1 = z1                                                                   (9) 
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The resulting State Transformation z=T(z) is: 
z1  = x1                                                                                                         
z2  = x2                                                                                                                                                                                   (10)                                   
z3  = -k x3

2 /mx1
2   + g                     

                    
shown in the right hand side block from Fig. 4.2. 
Using the state transformation results in the form, 
 

k
mzgzxzxzx )(,, 3132211 −===                                        (11) 

 
the control variable u is obtained from, 
 

1

32

3

2
1

2 x
xxv

kx
mxu +

−
=                                                     (12) 

 
as a nonlinear input transformation: 
 

332211 )( zGzGxzGv d −−−−=                                              (13) 
 
where, the value of the new control variable v is given by the Linear Full State 
feedback equation. 
  
 The blocks from Fig. 4.2 can now be defined as follows: 

• Linear Full State Feedback, Eq. 13; 
• Nonlinear Input Transformation, Eq., 12; 
• Nonlinear System Model, Eq. 3-5; 
• State Transformation, Eq. 10. 

 
 Even for this simple system, feedback linearization resulted in a complex 
control system. Simulation results show, however that this approach stabilized the 
system and provided good performance for the vertical position hold regulator. 
 
 Such an approach was applied for the global linearization for automatic flight 
control using a reduced dynamic system in [87] and a kinematic model in [44]. This 
approach was also used for a 1D reduced model of pitch dynamics [56]. The 
complexity of this feedback linearization approach might lead to solutions that do not 
satisfy real-time implementation constraints for swarming UAVs. A computationally 
less demanding approach is dynamic inversion used often in recent publications [57, 
85, 86, 88]. This approach is presented in the next section. 
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Dynamic Inversion Approach 
 Fig. 4.3 shows the generic diagram for dynamic inversion. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3  Generic diagram for dynamic inversion 
 
 In this case only one nonlinear transformation is required to transform new 
input, 
  
v =  ufb

(c) 
 
into the actual control input  
 
u = U(c) 
 
 As a result, a linearized system results   
 
dx/dt= ufb

(c) 
 
 The dynamic inversion approach will be illustrated for the same simple 
system shown in fig. 4.1.  Dynamic inversion is obtained here using an easy to 
present state derivative feedback approach [88].  
 
 For a general non-affine system  
 

dx/dt = F(x,u)                                                       (14) 
 
the mechanical model given by Eq (14), in state space format, is given by, 
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Taking the derivative of Eq. 14 
 

d2x/dt2 = (δF/δx)dx/dt +(δF/δu)du/dt                                     (16) 
 
the control variable is obtained in a linear form as du/dt: 

 
or 
 

1

2
2
1

2 x
uxv

ku
mx

dt
du

+−=                                                                                                             (17) 

 
 The nonlinear controllers, given by Eq. 17 and Eq. 12, are restricted to conditions in 
which the variables u and x1 in Eq. 17 and the variables x1 and x3 in Eq. 12 do not cross zero. 
This is because of the fact that these variables appear in the denominator of the nonlinear 
control functions.  A PD controller plus acceleration feedback can be chosen for obtaining the 
new control variable v: 
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For dx2/dt2 =v, the transfer function between xd and x1 is:  
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where the position error, velocity and acceleration feedback gains are Kp, Kd and Ka, 
respectively. This transfer function (19) shows that the proposed state derivative 
controller also achieves system linearization. Compared to the feedback linearization 
controller from the previous section, in this case a third state x3 is not defined, but the 
resulting du/dt has to be integrated. The fact that no state transformation z = T(x) is 
required represents an important computation simplification. 
  
 Simulation results indicate that, again, the response corresponds to a stable 
system. The steady-state error is very small. The overshoot is high but a better 
transient performance can be obtained by a more elaborate linear controller design 
[88].  Dynamic inversion was used for the linearization of the 1D nonlinear model for 
pitch rate q, as shown in Fig. 4.4.  The result is a linearized system,  
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dq/dt= ufb
(c) 

for which it is easier to design a feedback controller. [85] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4  1D dynamic inversion of UAV flight dynamics 
 
 This approach was reformulated with the inclusion of a Neural Network, trained to 
compensate unmodelled dynamics and parameters/states estimation uncertainties [57]. 
 
 In the next section, feedback linearization is shown as an interesting solution for 
global linearization of UAV dynamics, before applying model predictive control. 
 

4.2   Model Predictive Control of UAVs 

General Model Predictive Control (MPC) Concept 

 Predictive control has been studied mainly for Linear Time Invariant (LTI) systems, 
without or with state variables and/or control constraints [35].  All MPC controllers share the 
same idea of modulating the actual control command by using input/output predictions over a 
receding horizon [33].  Richalet et al. introduced in the late seventies the Model Algorithmic 
Control (MAC), in which the plant was represented by a Finite Impulse Response (FIR) 
model and the command was evaluated by computing on-line a dynamic optimization 
problem.  In Dynamic Matrix Control (DMC), introduced by Cutler and Ramaker , the model 
of the plant is defined using a Finite Step Response (FSR) model, the command resulted from 
the minimization of a quadratic cost functional and the control command variations were 
constrained to zero over part of the receding horizon, raising the distinct concept of prediction 
horizon and control horizon.  A generalisation of these methods, by Clarke et al., led to the 
Generalised Predictive Control (GPC) using an ARIMAX model for the plant and a general 
quadratic form for the cost functional. Soeterboek [34] has also presented a unifying scheme 
called Unified Predictive Control (UPC) from which all the MPC approaches can be seen as 
special cases. 
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 MPC in the continuous time domain can be formulated for a generic state space 
nonlinear model. [89] 

dx/dt = f(x, u,  η) 
 
y  = g (x, u, ε)  
 
where x is the state vector, u is the control vector, η is the state disturbance vector, y is the 
output vector and ε is the measurement noise vector.   
 
 The MPC problem is formulated as the optimisation problem for the control vector u 
given by, 
 
u* = min Φ (y, u) 
 
where Φ is the cost functional 
 
Φ(y, u) = It

t+T
h {(y- yd) TQ1(y- yd) + uTQ2u}dτ 

 
where Th is the horizon, yd is the reference output trajectory, Q1 and Q2 are weighting 
matrices.   
When a control horizon Tu<Th is used, the optimization is further constrained by 
 
du/dt = 0       for                    τ > t+Tu 
 
This formulation permits one to consider bounds on control and output variables in the form 
 
ymin <  y < ymax  
 
and 
 
umin <  u < umax 
 
Nonlinear MPC 
 
 The above solution u* can be obtained by solving a dynamic optimization problem.  
For discrete-time Linear Time Invariant (LTI) systems, the solution is analytically found for 
the unbounded case.  Methods using linear programming have also been developed and 
implemented successfully for the bounded optimization problem [35].  Only few direct 
nonlinear MPC approaches exist for nonlinear systems [92, 93].  For example, the 
optimization may be formulated as a variational problem, involving the numerical solution of 
a two point boundary value problem that may be too involved for real-time implementation.  
A second direct method consists in formulating the problem into a dynamic programming 
form.  An indirect approach is to apply the MPC for LTI systems using, at each sampling step, 
a linearized model of the plant around the current state. Another indirect method consists in 
using feedback linearization for nonlinear system model and then applying the MPC methods 
to the resulting linearized  LTI system [89].  Finally, another method is a neural network 
model based nonlinear MPC [92, 93].  Training these neural networks was based on 
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measurement data.  This is not useful for swarming UAV formation hold and collision 
avoidance, when the controller should be able to solve extreme flight situations, like near 
collision, for which measurement data could not be made available. In such cases full 
dynamic models are required and can be used in real-time either with fast numerical solvers or 
by training off-line a neural network to be used in real-time. 

 

MPC Applied for Flight Control 
 
 An example of MPC applied using a quasi-linearized model of the inner loop 
dynamics of a rotorcraft is given in shown in Fig. 4.5 [84].    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.5  Generic diagram for MPC for path-flight control 
 
 Inner loop dynamics is assumed quasi-linearized (reduced nonlinearities) by the 
Stability Augmentation System (SAS) for the time derivative of the altitude dh(t)/dt, pitch and 
airspeed. Longitudinal equations of motion are linearized for five representative airspeed 
values. Linear interpolation between these five equilibrium conditions, based on a low pass 
filtered airspeed, is used in this case. MPC is assumed applied for the altitude h(t) control 
loop. Time variation of the altitude tracking error is a sum of three sinusoids h(c)(t).  Results 
show errors of maximum 1.5 ft magnitude, even if SAS only reduce rather than cancel 
nonlinearities. While interesting, these results are for only one state, while formation hold and 
collision avoidance require multivariable MPC.  
 
 Linear MPC was successfully used for motion control of a nonlinear autonomous 
wheeled vehicle that was first subject to feedback linearization [39, 40, 43]. This approach 
could be reused for UAVs after training a neural network using a complete nonlinear UAV 
model, such that extreme flight conditions can be included in the trained neural network.  This 
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solution might reduce the computation time and permit real-time implementation of a MPC 
for multiple UAVs with collision avoidance. 
 
 Fig. 4.5 shows the generic diagram for another MPC application, in this case for 
heading control of multi-vehicles and multi-targets control for solving a cooperative control 
problem. This is an example of an attempt to solve a group dynamics problem taking into 
account vehicle motion models [91]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.6 Generic diagram for MPC for heading control of multi-vehicles and multi-
targets 
 
 The cooperative control problem consists in finding the paths of the j= 1,2,…,N 
vehicles such that all i =1,2,…, N targets are reached in a limited T time duration. This is a 
problem of the traveling salesman type. The 2D positions of the targets are σi,τ i , i = 1,2,.., M. 
given the actual 2D positions xj,yj of the vehicles, d i j distances to the M targets can be 
calculated, 
 
d i j  (t)= sqrt{ [xj(t)- σi]2 + [yj (t) - τ i] 2} 
 
Relative distances δ i j  are calculated as follows 
 
δ i j  (t) = d i j  (t)  / [min k≠j   d i k   (t)] 
 
Normalized relative distances q i j  (t) are calculated as follows 
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lim q i j  (δ i j  (t))=  0     for   δ i j  (t)  → 4 
 
 The receding horizon approach calculates the vehicle j heading command uj using 
quadratic finite time optimization of, for example, p i j  q i j , where p i j (δ i j) is the probability 
that vehicle j is assigned to target point I when relative distance is δ i j . This formulation is of 
the MPC type and, in principle, can be solved using dynamic programming. The vehicle 
model is very simple, a conversion of the velocity from polar Vj (velocity amplitude), uj 
(heading) components into Cartesian components dxj/dt and dyj/dt. The vehicle velocity 
amplitude Vj is considered given in this problem, while the heading uj is considered the 
receding horizon control variable. This approach is an interesting solution to be further 
developed for swarming UAV flight control. 
 
 
 
Distributed MPC 
 
 Distributed MPC is formulated for n-agents (or independent controllers) that can 
operate independently, but communicate to one another the current values of the control 
variables. In case that interactions between agents are limited, this approach might be more 
efficient computationally than the attempt to solve simultaneously the control problem for all 
agents [91]. 
 
 The solution to distributed MPC is developed mostly for the case of linear MPC 
without constraints. This is not surprising given that the nonlinear MPC problem is not yet 
completely solved for a single agent.  Distributed MPC seems, however, particularly suited to 
solve the problems of swarming UAV control and is definitely worthwhile to be further 
investigated for this purpose.   
 

4.3   Digital Simulation and Hardware-in-the-loop Simulation of 
Controllers  
 
Digital Simulation 
 
 Computer simulation of vehicle dynamics is greatly facilitated by the development of 
graphical programming languages. For example, Simulink and Stateflow were the languages 
used for a very detailed ground vehicle dynamics simulation using a mechatronics integration 
of mixed electric, mechanic, combustion and hydraulics subsystems [94].  
 
 Similar computer simulation using MATLAB/Simulink was developed for aircraft 
weapon system models [67]. The simulator includes airframe dynamics, avionics and 
controller models. MATLAB/Simulink simulators can eventually be made compatible with 
Real Time Workshop for C code compilation that allows real-time applications.  
MATLAB/Simulink, Stateflow and Virtual Reality Toolbox were used for simulating multi-
UAVs under cooperative control [61]. Fixed targets and obstacles for an arbitrary number of 
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UAVs can be simulated and displayed in animation mode. The simulator can be used for 
testing control algorithms on prototype vehicles. 
 
 Avionics development requires extensive simulation studies and avionics 
manufacturers sometimes offer dedicated softwares for aircraft simulator including avionics 
models. Piccolo system offers this package for its avionics for UAVs [76]. The simulator was 
presented in Ch. 2.  Generic aircraft simulators are Aerospace Blockset from MATHWORKS 
[78] and AeroSim from Unmanned Dynamics [77]. Aerospace Blockset contains components 
needed for assembling aircraft digital simulators for testing the autopilot and the navigation 
system, but lacks aerodynamics blocks. AeroSim has similar characteristics to  Aerospace 
Blockset, but contains aerodynamics blocks.  Unified synthetic environment simulators [5, 6] 
permit operational space simulation and visualization and were presented in Ch. 1.1.  
Computer simulators permit off-line analysis of prototype vehicles, but are limited by the 
unmodelled dynamics and parameters/state uncertainty. 
 
 Actual experimentation overcomes limitations because of unmodelled dynamics and 
parameters/state uncertainty. Moreover, experiments are avoided for extreme conditions, due 
to the high cost of vehicle damage, even if the design should be tested for evaluating their 
performance when such conditions occur. 
 
 Hardware-In-the Loop (HIL) simulation overcomes such limitations by assembling 
the vehicle combining computer simulated subsystems with available physical components. 
Moreover, HIL might be the only solution for evaluating system performance for extreme 
conditions, as for example near collision conditions or severe atmospheric conditions. The 
reduction of high mishap rates of UAVs to levels comparable to manned aircraft requires 
however that such tests are carried out before the whole UAV is available and the tests have 
to include extreme operating conditions. The high failure rate of UAV avionics cannot be 
explained and corrected by only testing avionics using the conventional HIL approach, 
because adjacent subsystems like sensors and actuators contribute to the occurrence of such 
failures. For this reason, in the next section both conventional and advanced HIL simulators 
will be presented.  
 

Hardware-in –the Loop Experimentation 
 

Currently, conventional Hardware-in-the-loop simulations are designed for testing 
physical Electronic Control Units interfaced with digitally simulated vehicles. Advanced 
hardware-in-the-loop simulators can, however, test active and passive mechanical loads, 
simulated physically on actual motors, under computer control. Based on the model of the 
active or passive mechanical load, the motor under digital control is used to emulate the load 
torque of a passive load not yet available in a physical form [96]. 

 
Mechatronic systems, as for example UAVs, are usually very complex systems 

consisting of different mechanical, electrical and electronic components. Building such 
systems could be time demanding and very expensive. Design of each component requires 
testing. If conducted on real final vehicles, this testing is expensive. Hardware-in-the-loop 
(HIL) testing can be one solution for such cases.   
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Current HIL simulators, for example dSPACE simulator, focus on the development of 
particular subsystems, mostly in the automotive industry, for example, electronic control units 
for engine control systems, development of ABS subsystems, steering and suspension 
subsystem development for ground vehicles [97].  

A HIL simulator for avionics is offered by the avionics producer of Piccolo avionics 
[76].   A similar conventional HIL simulator is available from BAE SYSTEMS Controls 
based on MATLAB/Simulink, Real-Time workshop and xPC Target or Real-Time Windows 
Target [66]. 
Fig. 4.7 shows the generic block diagram of such conventional HIL simulation setups. 
 
 
 
 
                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.7 Generic block diagram of a conventional HIL simulation setup 
 
 This conventional HIL simulator contains actual controller hardware interfaced with 
the computer simulated subsystem of actuators, UAV and sensors. Signals regarding body 
motion variables υ, estimated states X~ and the actual 3-D UAV trajectory x(t), y(t) and z(t) 
are provided by the computer simulated subsystem to the actual controller hardware, while the 
commands for control surface deflections δ(c) , are provided by the actual controller hardware 
to the computer simulated subsystem.  
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A complex conventional HIL simulator was developed for the Dragon Fly UAV [60]. 
 
A generic block diagram of an advanced HIL simulation setup is shown in Fig. 4.8. 
  
 
 
                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.8 Generic block diagram of an advanced HIL simulation setup 
 
This advanced HIL simulator contains actual controller hardware and physical 

actuators interfaced with the computer simulated subsystem of actuators, UAV and sensors 
[97]. As before, signals regarding body motion variables υ, estimated states X~ and 3-D UAV 
trajectory x(t), y(t) and z(t) are provided by the computer simulated subsystem to the actual 
controller hardware.  In this case, however, control surface deflections values δ, are provided 
by the physical actuators to the computer simulated subsystem, and the computer simulated 
subsystem is required to provide load torque feedback from the computer simulated control 
surfaces. This double variable interface is characteristic to mechatronic systems and requires 
motors under computer control that produce actual load torque for the actuators. This type of 
interface consists in power transmission, as opposed to the signal transmission interface of 
conventional HIL simulators [25]. 
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The HIL experimental setup shown in fig. 4.9 was designed to prove a concept of 
such an advanced HIL simulator for the simple case of a 1D system. The setup consists of two 
motors coupled together with a removable shaft. Motor holders are designed in a way that 
allows mounting of different motors, as shown in Figure 4.8 [96].  

 
 One of the motors represents the real actuator for a control surface while the second 
motor has the function to simulate the load applied by the control surface on the actuator 
shaft. Tests were carried out with both the load motor and the actual load.  
DC motors in this setup are driven by a power amplifiers, which convert input voltage into 
current, used to control torque of the actuator and of the simulated load. The system is 
controlled by dSPACE DSP based process computer, which is connected to a host PC. 
Control programs, written in C programming language, are loaded from PC to the dSPACE 
computer. Real time dSPACE operating system provides very efficient solution for control 
and monitoring of HIL experiments. 

 
 

 
 

Figure 4.9 HIL setup with simulated load 
 
 
 Tests carried out on the HIL setup shown in Fig. 4.9 proved the feasibility of 
advanced HIL simulator. Further developments of advanced HIL simulators are required for 
testing subsystems of UAVs. 
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5.   Conclusions and Recommendations concerning 
Flight and Mission Control of Swarming UAVs  
5.1   Conclusions 

1. The current state of Swarming UAV concept development and experimentation can 
be characterized by a separation between proposed solutions for group dynamics 
(swarming, tight or large formation flight, leader-followers formation etc), and the 
proposed solutions for individual UAV flight control.   
Group dynamics solutions satisfy the needs for strategic and tactical decisions 
regarding the missions for multi-UAVs, but generally ignore flight dynamic 
constraints and are not proved applicable, in particular to fixed wing UAVs.   
Flight control solutions have been tested in realistic simulations and experiments, but 
do not address the strategic and tactical questions and needs. 
Intermediate solutions use a simplified flight dynamics model and address only 
simple group dynamics issues.  
 

2. The specificity of fixed wing UAVs in both individual and group flight cannot be 
ignored. Marching human formations and a group of bicycle riders cannot realize the 
same commands, for example, because the bicycle can not achieve lateral motion and 
is stable only while moving.   
In general, legged animals and vehicles are omni-directional, while birds, fish, cars 
and airplanes are not.  In this framework, fixed wing UAVs are not omni-directional 
and cannot fly below certain airspeed.  
Moreover, control surfaces for aileron, elevator, rudder and thrusters do not permit 
the application of the lateral forces and achieve closed loop control of lateral motion. 
These vehicle constraints require the development of group dynamics solutions which 
take into consideration, from the beginning, that fixed wing UAV motion is only 
partly controllable. 

 
3. Swarming UAVs can be characterized by the fact that they operate in distinctively 

different modes of operation: cruising from initial station to arrive in formation, 
formation hold, collision avoidance with other UAVs and other moving or fixed 
obstacles, actual mission, etc.  It seems suitable to develop separate and specific 
controllers for each mode of operation with consideration to possible instability due to 
switching from one to another controller. 
 Individual UAV flight control can use the extensive experience from autopilot 
controllers designed for conventional aircrafts, including Stability Augmentation 
System design.  
Formation flight should include inter-UAV collision avoidance control using 
constrained kinematic controllers. 
Tight formation requires very fast control of inter-UAV clearance using constrained 
dynamics based controllers, to avoid collision and group instability. 
Flight controllers for actual missions might replace fuel efficiency criteria by safety 
and mission success criteria to be developed for specific applications. 
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This multitude of controllers has to be experimentally tested to qualify for real-time 
implementation.  
Interesting solutions for overall swarming UAV control are Distributed Model 
Predictive Control and Exact Linearization because of their ability to address both 
individual UAV flight constraints and group dynamics requirements. 
A combination of Neural Networks and Fuzzy Controllers, trained to achieve the 
performance of chosen advanced controllers is an interesting solution to real-time 
implementation requirements.  

 
4. After the design of swarming UAV controllers, testing cannot be immediately carried 

out experimentally because of the fact that when testing collision avoidance, 
controller failures can result in UAV destruction. For this reason, besides simulation 
tests, Hardware-In-the-Loop Simulation is required to test actual real-time hardware 
for controller, actuators, sensors and, possibly, payload.   Such a Hardware-In-the-
Loop set-up requires interfacing hardware with a dynamic simulation computer using 
both signal and power (velocity-force/torque) transmission 

 

5.2 Recommendations 
1. To satisfy both UAV flight constraints and address actual group dynamics issues, 

intensive research on nonlinear dynamics based real time control algorithm is needed 
with results tested in both virtual environments and by live experimentations.  

 
2. The constraints imposed by the non-holonomicity of fixed wing UAVs require the 

development of group dynamics solutions which take into consideration, from the 
beginning, that fixed wing UAV motion is only partly controllable. 

 
3. Extensive research on Distributed Model Predictive Control and Exact Linearization 

is proposed because of their ability to address both individual UAV flight constraints 
and group dynamics requirements. 

 
4. A combination of Neural Networks and Fuzzy Controllers, trained to achieve the 

performance of chosen advanced controllers is an interesting solution to real-time 
implementation requirements. 

 
5. Hardware-In-the-Loop Simulation is required to test actual real-time hardware for 

controller, actuators, sensors and, possibly, payload for the verification of the 
proposed Swarming UAVs control algorithm and simulation results. 
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